metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42:9D6, C6.932+ 1+4, C4:C4:54D6, (C4xD12):5C2, (C2xD12):18C4, D12:26(C2xC4), (C4xC12):4C22, C42:C2:6S3, D6:C4:60C22, C2.1(D4oD12), C6.17(C23xC4), (C2xC6).65C24, Dic3:5D4:11C2, D6.4(C22xC4), C4:Dic3:82C22, C22:C4.125D6, (C22xC4).204D6, C12.120(C22xC4), (C2xC12).583C23, C3:2(C22.11C24), (C4xDic3):10C22, (C22xD12).17C2, C22.27(S3xC23), (C2xD12).255C22, C23.26D6:24C2, (S3xC23).35C22, (C22xC6).135C23, C23.163(C22xS3), (C22xS3).162C23, (C22xC12).225C22, (C2xDic3).195C23, C6.D4.94C22, (C2xC4):6(C4xS3), C4.58(S3xC2xC4), (C2xC12):11(C2xC4), (S3xC2xC4):43C22, C22.27(S3xC2xC4), C2.19(S3xC22xC4), (C3xC4:C4):51C22, (S3xC22:C4):25C2, (C22xS3):7(C2xC4), (C3xC42:C2):7C2, (C2xC6).21(C22xC4), (C2xC4).271(C22xS3), (C3xC22:C4).135C22, SmallGroup(192,1080)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42:9D6
G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, ac=ca, dad=a-1, cbc-1=dbd=a2b, dcd=c-1 >
Subgroups: 936 in 338 conjugacy classes, 151 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, C23, C23, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C24, C4xS3, D12, C2xDic3, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C2xC22:C4, C42:C2, C42:C2, C4xD4, C22xD4, C4xDic3, C4:Dic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, S3xC2xC4, C2xD12, C22xC12, S3xC23, C22.11C24, C4xD12, S3xC22:C4, Dic3:5D4, C23.26D6, C3xC42:C2, C22xD12, C42:9D6
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, C24, C4xS3, C22xS3, C23xC4, 2+ 1+4, S3xC2xC4, S3xC23, C22.11C24, S3xC22xC4, D4oD12, C42:9D6
(1 38 14 34)(2 39 15 35)(3 40 16 36)(4 41 17 31)(5 42 18 32)(6 37 13 33)(7 27 44 20)(8 28 45 21)(9 29 46 22)(10 30 47 23)(11 25 48 24)(12 26 43 19)
(1 19 4 29)(2 27 5 23)(3 21 6 25)(7 32 47 35)(8 37 48 40)(9 34 43 31)(10 39 44 42)(11 36 45 33)(12 41 46 38)(13 24 16 28)(14 26 17 22)(15 20 18 30)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 36)(5 35)(6 34)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 38)(14 37)(15 42)(16 41)(17 40)(18 39)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)
G:=sub<Sym(48)| (1,38,14,34)(2,39,15,35)(3,40,16,36)(4,41,17,31)(5,42,18,32)(6,37,13,33)(7,27,44,20)(8,28,45,21)(9,29,46,22)(10,30,47,23)(11,25,48,24)(12,26,43,19), (1,19,4,29)(2,27,5,23)(3,21,6,25)(7,32,47,35)(8,37,48,40)(9,34,43,31)(10,39,44,42)(11,36,45,33)(12,41,46,38)(13,24,16,28)(14,26,17,22)(15,20,18,30), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,36)(5,35)(6,34)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)>;
G:=Group( (1,38,14,34)(2,39,15,35)(3,40,16,36)(4,41,17,31)(5,42,18,32)(6,37,13,33)(7,27,44,20)(8,28,45,21)(9,29,46,22)(10,30,47,23)(11,25,48,24)(12,26,43,19), (1,19,4,29)(2,27,5,23)(3,21,6,25)(7,32,47,35)(8,37,48,40)(9,34,43,31)(10,39,44,42)(11,36,45,33)(12,41,46,38)(13,24,16,28)(14,26,17,22)(15,20,18,30), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,36)(5,35)(6,34)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43) );
G=PermutationGroup([[(1,38,14,34),(2,39,15,35),(3,40,16,36),(4,41,17,31),(5,42,18,32),(6,37,13,33),(7,27,44,20),(8,28,45,21),(9,29,46,22),(10,30,47,23),(11,25,48,24),(12,26,43,19)], [(1,19,4,29),(2,27,5,23),(3,21,6,25),(7,32,47,35),(8,37,48,40),(9,34,43,31),(10,39,44,42),(11,36,45,33),(12,41,46,38),(13,24,16,28),(14,26,17,22),(15,20,18,30)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,36),(5,35),(6,34),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,38),(14,37),(15,42),(16,41),(17,40),(18,39),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 3 | 4A | ··· | 4L | 4M | ··· | 4T | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | ··· | 6 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | D6 | D6 | D6 | D6 | C4xS3 | 2+ 1+4 | D4oD12 |
kernel | C42:9D6 | C4xD12 | S3xC22:C4 | Dic3:5D4 | C23.26D6 | C3xC42:C2 | C22xD12 | C2xD12 | C42:C2 | C42 | C22:C4 | C4:C4 | C22xC4 | C2xC4 | C6 | C2 |
# reps | 1 | 4 | 4 | 4 | 1 | 1 | 1 | 16 | 1 | 2 | 2 | 2 | 1 | 8 | 2 | 4 |
Matrix representation of C42:9D6 ►in GL6(F13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 6 | 0 | 0 |
0 | 0 | 7 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 6 |
0 | 0 | 0 | 0 | 7 | 10 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 11 | 0 |
0 | 0 | 0 | 1 | 0 | 11 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 1 | 1 |
0 | 0 | 1 | 0 | 12 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 10 | 0 | 0 |
0 | 0 | 7 | 10 | 0 | 0 |
0 | 0 | 3 | 10 | 10 | 3 |
0 | 0 | 7 | 10 | 6 | 3 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,3,7,0,0,0,0,6,10,0,0,0,0,0,0,3,7,0,0,0,0,6,10],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,11,0,12,0,0,0,0,11,0,12],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,1,12,1,0,0,12,0,12,0,0,0,0,0,1,12,0,0,0,0,1,0],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,3,7,3,7,0,0,10,10,10,10,0,0,0,0,10,6,0,0,0,0,3,3] >;
C42:9D6 in GAP, Magma, Sage, TeX
C_4^2\rtimes_9D_6
% in TeX
G:=Group("C4^2:9D6");
// GroupNames label
G:=SmallGroup(192,1080);
// by ID
G=gap.SmallGroup(192,1080);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,184,570,80,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a^-1,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations